

UNIVERSIDAD DE BELGRANO

Las tesinas ^{de} Belgrano

Facultad de Ciencias Exactas y Naturales Licenciatura en Ciencias Biológicas

Caracterización genotípica de plantas de maíz (Zea mays L.) utilizando secuencias microsatélites distribuidas uniformemente sobre el genoma

Nº 17 Marcelo Lino Morales Yokobori

Director Técnico: Lic. Leonardo A. Ornella¹ **Profesor Tutor:** Dr. Héctor N. Torres²

Departamento de Investigación Junio 2002

Deseo expresar mi agradecimiento a:

Leonardo A. Ornella

Héctor N. Torres

Dedicado a mis padres

Índice

Índice.	5
Objetivos.	7
Introducción	7
Maíz, heterosis y secuencias microsatélites	7
Mutaciones en secuencias microsatélites	8
Caracterización genotípica	9
Distribuciones de frecuencias alélicas	9
Materiales y métodos.	10
Material vegetal.	10
Extracción de ADN y amplificación de secuencias microsatélites.	10
Iniciadores.	10
Determinación de los tamaños de los fragmentos.	. 11
Análisis estadístico.	13
Resultados y Discusión.	14
Contenidos de información polimórfica y distribuciones alélicas.	16
Agrupamientos de líneas.	22
Conclusiones.	25
Anexos	25
Pesos moleculares obtenidos a partir del patrón de bandas observado para cada locus Operadores lógicos	25 32
Referencias	32

Resumen:

Se caracterizaron 32 líneas de maíz (EEA INTA-Pergamino) junto con dos poblaciones sintéticas, utilizando 21 secuencias microsatélites distribuidas uniformemente sobre el genoma, mediante reacción de polimerización en cadena ("Polymerase Chain Reaction"). Se utilizaron como iniciadores secuencias -de 8 a 24 bases- complementarias a las que flanquean las secuencias de repetición. Las mismas se obtuvieron del trabajo de caracterización de líneas de maíz realizado por el "Working group on Biochemical and Molecular Techniques and DNA profiling in particular (UPOV. 1997)" y se corroboraron en el "Maize Data Bank". Se observó una media de 6 alelos por locus, variando los contenidos de información polimórfica de las líneas entre 0 y 0,90, con una media de 0,65. El agrupamiento de individuos se realizó mediante promedios aritméticos no ponderados entre grupos por pares ("Unweighted Pair Group Aritmetic Average"), aplicados a la matriz de similaridad obtenida con el coeficiente de Jackard. La correlación entre la matriz de distancia génica obtenida con Jackard y la obtenida con datos de actividad combinatoria específica previamente establecidos resultó del 44%. La baja correlación obtenida se atribuyó a la distribución uniforme de secuencias microsatélites, que no necesariamente reflejó la existencia de loci de caracteres cuantitativos ("Quantitative Trait Loci"), como así también a las limitaciones del modelo de infinitos alelos ("Infinite Alelle Model").

Objetivos

El genoma de maíz (*Zea Mays*) presenta una dotación cromosómica diploide de veinte cromosomas, cuyas longitudes no resultan significativamente diferentes entre sí.

El objetivo de este trabajo fue la caracterización genotípica de **líneas** de maíz, mediante el estudio de **secuencias microsatélites** utilizando una distribución uniforme de las mismas sobre el genoma, con el propósito de asignar **líneas** de maíz a grupos heteróticos. Una **línea** (o subpoblación) es un conjunto de plantas con características fenotípicas propias que descienden, a través de sucesivas generaciones de autogamia artificial, de un único individuo originario; *i.e.* el árbol de ascendencia de cada individuo, por debajo del originario, resulta sencillamente una línea.

Para concretar el objetivo se utilizaron treinta y dos líneas de origen argentino, obtenidas en la EEA INTA-Pergamino, y dos **poblaciones sintéticas** de origen estadounidense divergentes entre sí, disponiéndose además de valores de **aptitud combinatoria específica** de 29 de las 32 líneas evaluadas (Nestares *et al.,* 1996). Una población sintética es una población generada por el cruzamiento entre dos o más líneas. La aptitud combinatoria específica de un individuo o línea de producir descendencia de alto rendimiento mediante la cruza con otros individuos o poblaciones específicos.

Además se observaron las distribuciones de frecuencias alélicas en cada *locus* estudiado y se calculó el contenido de información polimórfica de los 21 *loci* analizados, incluyendo cinco *loci* cuyas secuencias de repetición y tamaños de alelos no son de público conocimiento.

Introducción

Maíz, heterosis y secuencias microsatélites

Las **heterosis** (también llamado **vigor híbrido**) es un fenómeno de superioridad, característico de ciertas especies, que presenta la cruza entre dos individuos, habitualmente diferenciados genotípica y fenotípicamente entre sí.

La aplicación de heterosis en maíz, uno de los principales recursos alimenticios del mundo, representa incrementos de miles de millones de dólares en la producción. Uno de los principales retos que encaran los mejoradores de maíz es la asignación de líneas a grupos heteróticos.

La heterosis resulta, por debajo de un umbral, proporcional en líneas generales a la distancia génica (Tenkouano *et al.*, 1997). Este comportamiento, así como el interés creciente en utilizar la caracterización genotípica en la protección de la propiedad intelectual, determinan la relevancia del conocimiento de las características genotípicas de las distintas líneas comerciales. En otras palabras la selección asistida por marcadores moleculares promete una ganancia génica más rápida que las actuales prácticas de mejoramiento (Lipkin *et al.*, 1998).

La teoría de dominancia es la más aceptada explicación del fenómeno de heterosis. Dos parentales portadores de diferentes alelos dominantes al ser cruzados producen una F₁ más vigorosa que cada parental individualmente (www.as.wvu.edu.~kgarbutt/Papers2/Hetero.html, 2000). Otra teoría es la de sobredominancia, que asume que la combinación heterocigota de alelos en un dado *locus* es superior a cualquier combinación homocigota de dichos alelos (Xiao *et al.*, 1995), siempre que los *loci* afectados correspondan a caracteres cuantitativos (Jonson *et al.*, 1993).

Marcadores morfológicos y de rendimiento han sido tradicionalmente utilizados para estimar distancias génicas en plantas. Sin embargo las características fenotípicas no arrojan resultados certeros sobre la composición genotípica de los individuos (Stuber *et al.*, 1987). Tal es el caso de la cantidad de granos por espiga, producto de la expresión combinada de varios genes, fuertemente influenciado por el medio ambiente y el hombre.

El **pedigree**, *i.e.* la genealogía del individuo donde el parentesco queda descrito en forma de árbol genealógico, y la heterosis están relacionados. Sin embargo su mutua relación no es simple. Los respectivos agrupamientos pueden ser establecidos en términos de distancia génica. Para revelar el pedigree basta una distribución uniforme sobre el genoma de los marcadores utilizados (Bernardo *et al.*, 1999), pues resta importancia si éstos están ligados a *loci* de caracteres cuantitativos ("Quantitative Trait *Loci*"). En cambio para determinar grupos heteróticos, por tratarse la heterosis de un fenómeno expresado fenotípicamente, no resulta tan evidente que una distribución arbitraria o uniforme de marcadores moleculares proporcione la información deseada para asignar líneas de maíz a grupos heteróticos.

Las secuencias microsatélites ("Simple Sequence Repeats") son repeticiones en "tandem" de secuencias cortas de nucleótidos -2 a 6 pares de bases-, cuyas secuencias adyacentes permiten amplificarlas

mediante reacción de polimerización en cadena ("Polymerase Chain Reaction" o PCR) con la utilización de iniciadores ("Working group on Biochemical and molecular techniques and DNA-profiling in particular", 1997; Goldstein, 1997). Son llamadas secuencias microsatélites en alusión a los minisatélites, primeros en descubrirse, que presentan secuencias de repetición más grandes. Debido a su excepcional variabilidad y relativa facilidad de análisis las secuencias microsatélites son hoy consideradas los marcadores genéticos más poderosos (Goldstein, 1997). Los "**RFLP** (Restriction Fragment Length Polymorphism)", *i.e.* fragmentos polimórficos en longitud obtenidos mediante enzimas de restricción, y los "**RALP** (Random Amplified Length Polymorphism)", *i.e.* fragmentos polimórficos en longitud obtenidos por las secuencias microsatélites debido a que estas últimas presentan *loci* con más de 10 alelos y contenidos de información polimórfica superiores a 0,60 (Goldstein, 1997). Las secuencias microsatélites están presentes en todas las células eucariotas y se ubican en *loci* específicos densamente distribuidos sobre los genomas, tanto en regiones codificantes como no codificantes (Cardle *et al.*, 2000). Las mismas probaron ser altamente polimórficas y útiles en maíz (Bernardo *et al.*, 1999; Smith *et al.*, 1997).

Mutaciones en secuencias microsatélites

Una variedad de estudios *in vivo* e *in vitro* indican que las secuencias microsatélites nucleares son altamente inestables, presentando una de las más altas tasas de mutación observadas en marcadores moleculares (Goldstein, 1997). La misma varía entre 10⁻² y 10⁻⁵ por generación (Macaubas *et al.*, 1997). Los patrones de mutación observados parecen corresponderse bien con un modelo de pequeños cambios en las unidades de repetición, vía un mecanismo de **patinaje de las hebras** ("strand-slippage") durante el proceso de extensión (Levinson y Gutman, 1987; Strand *et al.*, 1993; Schlötterer y Tautz, 1992). Dicho patinaje provoca la formación de un rulo del tamaño de una o varias secuencias de repetición, *i.e.* respetando la complementariedad de las bases, en la hebra templada o la sintetizada (Figura 1). Se altera así, durante la síntesis de la hebra en formación, el número total de secuencias de repetición polimerizadas, obteniéndose una hebra más larga si el rulo se formó en la hebra sintetizada y una más corta si el rulo se formó en la hebra templada.

Caso en que un **rulo** se forma en la **hebra templada**. La polimerasa sintetiza una secuencia de repetición menos.

Caso en que un **rulo** se forma en la **hebra sintetizada**. La polimerasa sintetiza una secuencia de repetición más.

Figura 1. "Strand-slippage". Ejemplo de mutación de una sola repetición en una secuencia microsatélite tetranucleótida. La formación de un rulo en las hebras durante la polimerización, compuesto en este caso por una sola secuencia de repetición, ocasiona el acortamiento o alargamiento de la hebra extendida. En cambio otros tipos de mutaciones, *e.g.* **sobrecruzamiento desigual** ("unequal crossing-over"), son ahora considerados menos relevantes en secuencias microsatélites (Chin *et al.*, 1996; helix.biology.mcmaster.ca/brent/node4/html, 1999). El sobrecruzamiento desigual, frecuente durante la meiosis, a diferencia del anterior involucra grandes alteraciones de tamaño en los *loci* afectados, siendo ésta la principal objeción para explicar el polimorfismo de reducidos cambios propio de las secuencias microsatélites.

Por otro lado los patrones de mutación observados en las secuencias microsatélites de cloroplastos revelan una baja tasa de mutación (Provan *et al.*, 1999).

Caracterización genotípica

En cada genotipo la amplificación de *loci* específicos revela la presencia de uno o más alelos por *locus*, según el grado de ploidía de la especie y según sea el individuo heterocigota u homocigota. Una elección no arbitraria de un número significativo de secuencias microsatélites, *e.g.* una distribución uniforme sobre el genoma, permite, mediante la amplificación de dichas secuencias y su posterior resolución, obtener una **identificación del individuo (huella digital o "fingerprint")**. La identificación del individuo queda descrita por el conjunto total de alelos obtenido para cada uno de ellos, llamado **patrón alélico**. La comparación de patrones alélicos, mediante coeficientes de similaridad, permite establecer grupos de individuos con características génicas similares (Pejic *et al.*, 1998). Dichos grupos, asociables a pedigree o a grupos heteróticos, suelen ser representados mediante un **dendrograma**. Un dendrograma (*gr.* dendron: árbol y *gr.* diágramma: diseño) es una descripción en forma dendrítica del grado de similaridad génica entre individuos pertenecientes a una misma especie o a distintas especies, donde cada punto de ramificación representa el valor de similaridad o distancia génica entre los grupos representados por las ramas que se abren.

Distribuciones de frecuencias alélicas

Cada individuo presenta una propia combinación alélica llamada **genotipo**. Los factores ambientales, de suelo y el hombre determinan que individuos sobreviven y por lo tanto que alelos o combinaciones alélicas prevalecen en los genotipos, generando así tres tipos distintos de selección (o combinaciones de ellas) descritas por las distribuciones de frecuencias alélicas en cada *locus* (figura 2). La **selección estabilizado**ra, con distribuciones alélicas normales en los *loci*; son frecuentes en poblaciones donde los factores de selección se han tornado muy restrictivos, privilegiando así un genotipo en particular. La **selección orienta**da, con distribuciones de un máximo y sin simetría bilateral, son consecuencia de cambios unilaterales en los factores de selección, *e.g.* la presión ocasionada por el hombre en *Zea Mays* al optar por individuos con mayor rendimiento. La **selección disruptiva**, con distribuciones de un máximo, son consecuencia en cambio de la actuación multilateral de uno o varios factores, *e.g.* la búsqueda simultánea de maíz rico y pobre en aceite (Strasburger, 1991).

Figura 2. Posibles curvas de selección en una distribución de frecuencias alélicas.

Materiales y métodos.

Material vegetal.

Se utilizaron en este estudio treinta y dos líneas de maíz obtenidas en la EEA INTA-Pergamino y dos poblaciones sintéticas de origen estadounidense, Sintética Mo17 y Sintética B73.

El listado incluye 2 líneas Sintética Híbrido Comerciales (SHC), 6 líneas Sintética Colorado Dura (SCD), 3 líneas Compuesto Argentino Caribe (CAC), 3 líneas Compuesto Selección Masal (CSM), 2 líneas Sintética A (SA), 3 líneas Compuesto Resistente Paraná (CRP), 2 líneas Compuesto Poblaciones Coloradas Argentinas (CPCA), 1 línea Mejoramiento de P578 (MP578), 1 línea Población Local (PL), 1 línea Material de Colección Exótico (MCE), 1 línea Mejoramiento de línea A1 (MLA1), 1 línea Compuesto II (CII), 1 línea Castaño Klein (C^{*}K), 1 línea Argentina Exótico (A^{*}E), B73 y Mo17. Las líneas SHC fueron LP662 y 678. Las líneas SCD fueron LP34, LP13, LP19, LP32, LP22 y LP521. Las líneas CAC fueron LP117, LP122 y LP123. Las líneas CSM fueron LP103, LP109 y LP110. Las líneas SA fueron LP62 y LP70. Las líneas CRP fueron LP140, LP146 y LP147. Las líneas CPCA fueron LP38 y LP44. La MP578 fue LP152. La PL fue ZN6. La MCE fue LP138. La MLA1 fue LP153. La CII fue LP199. La C^{*}K fue LP125. La A^{*}E fue 1338.

Extracción de ADN y amplificación de secuencias microsatélites.

El ADN fue extraído de tejido fresco foliar siguiendo el procedimiento con **CTAB** (Tris 100 mM, CINa 700 mM, EDTA 50mM, bromuro de cetavron 1%, b-mercaptoetanol 140 mM y sodiumdodecilsulfatum 1%) descrito por Shagai-Maroof *et al.* (1984), con ligeras modificaciones.

Aproximadamente 6 g de material vegetal provenientes de hojas jóvenes de 5-10 plantas por línea fueron triturados con mortero e incubados durante 1 hora en "buffer" de extracción CTAB. Las impurezas fueron eliminadas de fase acuosa mediante dos lavados sucesivos con cloroformo. El ADN fue precipitado con 0,7 volúmenes de isopropanol. Luego de dos lavados con etanol 70% se resuspendió el "pellet" en TE 0,1 (Tris 0,8 mM, EDTA 0,4 mM) pH 8.0.

La PCR fue llevada a cabo mediante un programa "touchdown" (Don et al., 1991). Un programa "touchdown" es un programa de termociclación aplicado a la PCR, que incluye una subrutina inicial (protocolo "touchdown") en la cual la temperatura de hibridación decrece en cada ciclo, mientras que el resto del programa utiliza una única temperatura de hibridación. Una desnaturalización inicial de 94°C durante 2 min. fue seguida por un protocolo "touchdown" compuesto por 5 ciclos, cada uno de los cuales incluyó una desnaturalización a 94°C por 20 s; una hibridación para el primer ciclo de 65°C, decreciendo 1°C por ciclo, hasta alcanzar 61°C en el último ciclo, durante 1 min.; y una extensión a 72°C durante 2 min. El resto del programa incluyó 30 ciclos cada uno con una desnaturalización a 94°C por 20 s, una temperatura de hibridación de 60°C durante 1 min., y una extensión a 72°C durante 2 min.. El programa se ejecutó en un termociclador Perkin Elmer. La mezcla de reacción incluyó "buffer" termofílico de reacción 1´ (CIK 50 mM, Tris-HCI 10 mM, pH 9.0 a 25 °C, y Tritón X-100 0,1 %), Cl₂Mg 1,54mM, Taq polimerasa 0,5 U, dNTPs 0,05 mM cada uno, ADN templado 2,34 ng/ml e iniciadores 0,35 mM cada uno, en un volumen final de 13,3 ml. Para las poblaciones sintéticas se incluyó ADN de dos individuos en cada mezcla de reacción. Los productos amplificados fueron mezclados con 10 ml de solución de siembra 1' (formamida 95%, NaOH 10mM, bromofenol azul 0,05%, xilenocianol 0,05%). Las muestras fueron desnaturalizadas a 94 °C durante 6 minutos y corridas a 45 W junto con marcadores de peso molecular (300 pb-75 pb, "step ladder": 25 pb, PROMEGA) en geles de ureapoliacrilamida al 6% sumergidos en "buffer" TBE 1´ (Tris-Borato 0,09M, EDTA 0,002M pH 8.3) durante 2-3 horas. Los geles fueron fijados en ácido acético 10% y las bandas reveladas por tinción con nitrato de plata ("Silver Séquense TM DNA sequencing system, PROMEGA").

Algunas muestras fueron también corridas a 60V en geles de agarosa ("molecular biology certified", Biodynamics) al 3 % con bromuro de etidio, sumergidos en buffer TBE 1´ (Tris-Borato 0,09M, EDTA 0,002M pH 8.3), y las bandas visualizadas con radiación UV. Pero la baja resolución obtenida en estos geles no permitió resolver con claridad los productos de amplificación, los cuales fueron resueltos nuevamente utilizando geles de urea-poliacrilamida.

Iniciadores.

Un marcador genético puede ser cualquier *locus* en el genoma que, de existir variaciones del mismo entre distintos individuos, permita distinguir a cada portador de una variante de dicho *locus* del resto de la población. Si la modificación es muy poco frecuente habitualmente se la denomina mutación. Si en cambio la misma es frecuente se la denomina **polimorfismo**. Los mapeos genéticos de ligamiento se efectúan siguiendo el patrón de heredabilidad de tales variantes genéticas. La cuantificación del polimorfismo permite determinar la capacidad discriminatoria de dichos *loci*.

Previamente se seleccionaron cincuenta iniciadores del trabajo de caracterización de líneas de maíz realizado por el "Working group on Biochemical and Molecular Techniques and DNA profiling in particular (UPOV. 1997)", por su alto **contenido de información polimórfica**, y los mismos se corroboraron en el "Maize Data Bank". Debido a la falta de consenso entre autores sobre la ubicación de los *loci* de caracteres cuantitativos más relevantes, se realizó una representación genotípica uniforme. Se seleccionaron veintiún iniciadores ("Brookhaven National Laboratory of Genetics" o **bnlg**, "North Carolina" o **nc**, "Pioneer high bred" o **phi y** "University of Missouri-Columbia" o **umc**), distribuidos uniformemente sobre el genoma (aproximadamente 2 por cromosoma), preferentemente dinucleótidos y alejados entre sí (tabla 1). Los dinucleótidos suelen ser más polimórficos. Los iniciadores que no amplificaron al menos 80% de las líneas fueron reamplificados por segunda vez y si reiteraron fallas de amplificación fueron descartados y reemplazados por otros.

Determinación de los tamaños de los fragmentos.

Los tamaños de los fragmentos fueron calculados mediante una aproximación exponencial (EXCEL 2000) a partir de los datos de marcadores de peso molecular. La distancia entre bandas fue establecida por medición directa, a partir de las líneas medias de las mismas. En secuencias microsatélites es frecuente la aparición de bandas que no reflejan el tamaño real de los alelos, sino que son producto de errores en los mecanismos de amplificación utilizados. Reciben especial atención los productos formados vía el patinaje de las hebras sobre la polimerasa antes mencionado, cuyas respectivas bandas suelen llamarse "shadows" (sombras o "stutter bands"). Este problema representa probablemente la mayor dificultad de resolución en bandas de secuencias microsatélites. En esta investigación las "shadows" de dinucleótidos fueron discriminadas siguiendo el estudio realizado por Clarke et al. (2001), según el cual algunas cadenas de dinucleótidos se acortan durante la PCR, debido a la pérdida de unidades de repetición. Una de las mayores dificultades que surgen para discriminar "shadows" es la posibilidad de que se traten de individuos heterocigotas. Por eso, en este estudio, se asumió que si las bandas estaban igualmente espaciadas en una cantidad significativa de muestras, se trataban de "shadows" y no de individuos heterocigotas. Por otro lado la heterocigosis es muy poco frecuente en líneas de maíz. Concretamente, cuando se observaron en varias muestras de amplificación de un locus dinucleótido, pares de bandas igualmente espaciadas entre si, se asumió que las bandas inferiores correspondían a "shadows" y se las eliminaron del análisis (figura 3). En el caso de secuencias microsatélites trinucleótidas y tetranucleótidas, la mayor tendencia de las "shadows" a ocurrir en dinucleótidos (Smith et al., 1997) sumada a que el mecanismo de formación de "shadows" resulta el mismo que el de las mutaciones, siendo la tasa de mutación observada en tetranucleótidos y trinucleótidos inferior a la de dinucleótidos (Chakraborty et al., 1997), fueron las premisas para discriminar las "shadows" en estos casos. Concretamente, cuando se observaron en varias muestras de amplificación de trinucleótidos y tetranucleótidos, pares de bandas igualmente espaciadas entre si, las bandas de menor intensidad se eliminaron del análisis (figura 4).

Figura 3. Ejemplo de bandas "shadows" en un probable dinucleótido (bnlg 127). La banda superior fue la utilizada en cada calle.

Figura 4. Ejemplo de bandas «shadows» en un tetranucléotido (phi 113). La banda de mayo intensidad fue la utilizada en cada calle.

Caracterización genotípica de plantas de maíz (Zea mays L.)...

Ubicación geonómica	Secuencia de repetición	Iniciador <i>locus</i>	Secuencia de iniciadores "forward" y "reverse" respectivamente
1.03	AG	<u>p-phi001</u>	TGACGGACGTGGATCGCTTCAC AGCAGGCAGCAGGTCAGCAGCG
1.09	55	p-bnlg400	AGCTGTGACTGTGAAGGGAAAA CGTCACACCGCTGTTTCTTG
.05	(ACA)17	p-umc1065	ACAAGGCCATCATGAAGAGCAGTA CACGGTCTGGCACACTAACCTTAT
.08	AG(14)	p-bnlg1169	CTAAGCTAGACACGGCCCTG GATCTCGTCCCGATTTTCAA
3.01	АСТ	<u>p-phi049</u>	CITCIGTICCGCCATCCAGTATGTT GATTGCGATAACATTGCGGCAAGTTGT
3.04	5:5	p-bnlg602	CCCGATAGCCAAGCTCTCGCCAA AGCTCGTGGACCGAACAAGCCCA
3.07	5:	p-bnlg197	GCGAGAAGAAAGCGAGCAGA CGCCAAGAAGAAACACATCACA
4.05	СГ	<u>p-phi026</u>	TAATTCCTCGCTCCCGGATTCAGC GTGCATGAGGGAGCAGCAGGTAGTG
4.08	CTAG	<u>p-phi093</u>	AGTGCGTCAGCTTCATCGCCTACAAG AGGCCATGCATGCTTGCAACAATGGATACA
5.03- 5.04	GTCT	<u>p-phi113</u>	GCTCCAGGTCGGAGATGTGA CACAACACATCCAGTGACCAGAGT
5.06	5 ⁵	p-bnlg609	GCTCGTTCTCGCCAGTGTGCCG GGCCCGAGCCATCTCTGCTGC
6.05	AG	<u>p-nc013</u>	AATGGTTTTGAGGATGCAGCGTGG CCCCGTGATTCCCTTCAACTTTC
6.08	ATGC	<u>p-phi089</u>	GAATTGGGAACCAGACCACCAA ATTTCCATGGACCATGCCTCGTG
7.01	GCC	<u>p-phi057</u>	CTCATCAGTGCCGTCGTCCAT CAGTCGCAAGAAACCGTTGCC
7.06	TGAC-GAC	<u>p-phi116</u>	GCATACGGCCATGGATGGGA TCCCTGCCGGGACTCCTG
8.02	AG	<u>p-phi119</u>	GGGCTCCAGTTTTCAGTCATTGG ATCTTTCGTGCGGAGGAATGGTCA
8.08- 8.09	TITG	<u>p-phi015</u>	GCAACGTACCGTACCITITCCGA ACGCTGCATTCAATTACCGGGAAG
9.01	AT	<u>p-phi068</u>	GTACACACGCTCCGACGATTAC TCTTCTCCACCAGAGCCTTGTAAG
9.03	5 ⁵	<u>p-bnlg127</u>	CATGTATACGAGAAGCACCCTAT ATCGTAACTCAGCGGTTTGTG
10.00	AGCC	<u>p-phi041</u>	TTGGCTCCCAGCGCCGCAAA GATCCAGAGCGATTTGACGGCA
10.02	AG(34)	<u>p-bnlg1451</u>	TGATCGATGGCTCAATCAGT ATCTGGAACACCGTCGTCTC
10.07	AG(24)	p-bnlg1839	AGCAGACGGAGGAAACAAGA TCTCCCTCTCCCCTCTTGACA

Análisis estadístico.

El valor del **contenido de información polimórfica (CIP)** es un parámetro frecuentemente utilizado para medir la capacidad discriminatoria de los loci. Existen varias ecuaciones matemáticas que lo definen y en todas ellas sus valores varían siempre entre 0 y 1. En este estudio se calcularon los valores del contenido de información polimórfica mediante el algoritmo (Working group on Biochemical and molecular techniques and DNA-profiling in particular, 1997; Smith *et al.*, 1997; Ben Hui Liu, 1987):

$$CIP = 1 - \sum_{i=1}^{N} p_i^2$$

donde p, es la frecuencia alélica del i-ésimo alelo y N el número de alelos observados.

Son de primordial interés para analizar información provista por marcadores moleculares las medidas de similaridad que utilizan datos de presencia o ausencia (Dudley 1998). Para estimar las distancias génicas entre individuos se utilizaron, mediante el programa NTsys (versión 2.01), coeficientes de similaridad basados en la presencia o ausencia de alelos.

Se utilizaron entre otros el coeficiente de concordancia simple ("Simple Matching Coefficient". Sneath y Sokal, 1973):

$$S_{ij}^{CS} = \frac{A_{ij} + D_{ij}}{N}$$

y el coeficiente de Jackard (1908):

$$S_{ij}^{J} = \frac{A_{ij}}{N - D_{ij}}$$

donde:
$$A_{ij} = \sum_{h=1}^{N} Y(a_{ih}, a_{jh})$$
 $D_{ij} = \sum_{h=1}^{N} NegO(a_{ih}, a_{jh})$

siendo a_{in} y a_{jh} los valores de presencia (1) o ausencia (0) de los h-ésimos alelos pertenecientes al iésimo y j-ésimo individuo respectivamente; Y y NegO los operadores buleanos (Anexo) y N el número de alelos observados.

Cuando se utilizan coeficientes de similaridad como los arriba mencionados, se define a la distancia génica como la diferencia entre la unidad (máximo valor posible tanto de similaridad como de distancia génica) y la similaridad. Para su posterior correlación con otros resultados de distancia génica, obtenidos con datos de actividad combinatoria específica, se utilizó dicha definición para calcular las distancias génicas a partir de los datos obtenidos de las secuencias microsatélites.

Para evaluar la utilidad del método aplicado de caracterización genotípica, en la asignación de líneas a grupos heteróticos, se utilizaron datos de actividad combinatoria específica (**ACE**) de 29 de las 32 líneas analizadas con secuencias microsatélites (Nestares, 1996). Los mismos habían sido obtenidos mediante la cruza entre las líneas y dos pares de poblaciones sintéticas divergentes entre sí (entre ellas SMo17 y SB73). Como medida de distancia génica se utilizó la distancia euclídea entre los puntos descritos por los datos de las coordenadas ACE_{SM017}, ACE_{SB73}, ACE_{HP3} y ACE_{P512}.

Las correlaciones entre las matrices de distancia obtenidas con secuencias microsatélites y la obtenida con los datos de actividad combinatoria específica fueron calculadas utilizando EXCEL 2000.

Las asociaciones entre líneas, a partir de los datos de secuencias microsatélites y de actividad combinatoria específica, fueron reveladas mediante el método jerarquizado de **promedios aritméticos no ponderados entre grupos por pares ("Unweighted Pair Group Arithmetic Average")** descrito por el "Working group on Biochemical and molecular techniques and DNA-profiling in particular" (1997). El algoritmo utiliza como regla de jerarquización la minimización de la distancia génica entre grupos, definida como el promedio aritmético no ponderado entre un grupo i de m individuos y otro grupo j de n individuos, *i.e.*

$$d_{ij} = \frac{1}{mn} \sum_{h=1}^{m} \sum_{l=1}^{n} d(ih, jl)$$

donde el h-ésimo y el l-ésimo individuo pertenecen al i-ésimo y j-ésimo grupo respectivamente.

Resultados y Discusión

Los 21 loci analizados en geles de urea-poliacrilamida (*e.g.* figuras 5-13) fueron las fuentes de toda la información obtenida (Tablas de tamaños obtenidos de fragmentos en Anexo). Los geles de agarosa fueron descartados del análisis debido a la baja resolución obtenida, la cual no permitió diferenciar claramente las bandas.

En bnlg 400 (figura 15) los fragmentos obtenidos resultaron 109, 107, 105, 103, 101, 99 y 97 pb, indicando así la presencia de un dinucleótido. En bnlg 602 (figura 18), bnlg 609, bnlg 197 y bnlg 127 (figura 19) no se obtuvo suficiente resolución para determinar los tamaños de los fragmentos de repetición. Sin embargo los altos valores de contenido de información polimórfica obtenidos en estos *loci* (0,78; 0,87; 0,78 y 0,90 respectivamente), así como en bnlg 400 (0,83), se corresponden en general con dinucleótidos, antes que trinucleótidos o tetranucleótidos (Smith *et al.*, 1997).

Figura 5. phi 093. Cromosoma 4. Contenido de información polimórfica obtenido (líneas) = 0,59. Contenido de información polimórfica obtenido (total) = 0,53. Un caso de bajo polimorfismo

Figura 6. phi 113. Cromosoma 5. Contenido de información polimórfica obtenido (líneas) = 0,72. Contenido de información polimórfica obtenido (total) = 0,63. Obsérvense las bandas tartamudas (bandas más claras). Las bandas a la derecha de la raya color canela (poblaciones sintéticas) describen un comportamiento monomórfico del *locus*, bajando significativamente el valor de contenido de información polimórfica. Las bandas correspondientes a los fragmentos pesados observados no se muestran en la figura.

Figura 7. bnlg 400. Cromosoma 1. Contenido de información polimórfica obtenido (líneas) = 0,83. Contenido de información polimórfica obtenido (total) = 0,80. A la derecha de la raya color canela: poblaciones sintéticas. Resto: líneas utilizadas.

Figura 8. bnlg 127. Cromosoma 9. Contenido de información polimórfica obtenido (líneas) = 0,90. Contenido de información polimórfica obtenido (total) = 0,86. El más alto grado de polimorfismo observado en este trabajo, tanto en líneas utilizadas (izquierda de raya color canela) como en las poblaciones sintéticas extranjeras (resto). Ambos valores de contenido de información polimórfica (líneas y total) son altos.

Figura 9. Cromosoma 2: bnlg 1169. Contenido de información polimórfica (líneas) = 0,74. Contenido de información polimórfica (total) = 0,74. El monomorfismo descrito por las bandas a la derecha de la raya color canela (poblaciones sintéticas) no modificó el índice de polimorfismo.

Figura 10. bnlg 602. Cromosoma 3. Contenido de información polimórfica obtenido (líneas) = 0,78. Contenido de información polimórfica obtenido (total) = 0,71. Obsérvese el alto grado de polimorfismo descrito por las bandas a la izquierda de la raya color canela (líneas), mientras que las bandas de la derecha describen un comportamiento general monomórfico (poblaciones sintéticas).

Figura 11. phi 041. Cromosoma 10. Contenido de información polimórfica obtenido (líneas) = 0,70. Contenido de información polimórfica obtenido (total) = 0,60. Se puede apreciar la divergencia génica entre las dos poblaciones sintéticas (SMo17 y SB73), al comparar las bandas entre las rayas color canela y verde (SMo17) con las que se encuentran a la derecha de la raya color verde (SB73); ambos comportamientos monomórficos en general pero centrados en distintos alelos respectivamente.

Figura 12. phi 119. Cromosoma 8. Contenido de información polimórfica obtenido (líneas) = 0,74. Contenido de información polimórfica obtenido (total) = 0,71. Comportamiento polimórfico similar entre líneas (izquierda de la raya color canela) y poblaciones sintéticas (derecha de la raya color canela).

Figura 13. phi 116. Cromosoma 7. Contenido de información polimórfica obtenido (líneas) = 0,52. Contenido de información polimórfica obtenido (total) = 0,52. Un caso de bajo polimorfismo generalizado.

Contenidos de información polimórfica y distribuciones alélicas.

Se compararon algunos valores obtenidos de contenido de información polimórfica con los publicados por otros autores (Tabla 2). Las líneas Pergamino están bastante emparentadas, por esa razón pueden esperarse valores de contenido de información polimórfica bajos en algunos *loci*. En cambio Smith *et al.* (1997) utilizaron líneas de maíz con una diversidad genética muy amplia, obteniendo así valores algo superiores. Los valores obtenidos por "Asian Maize Biotechnology Network" resultan similares (excepto phi 116) a los obtenidos en este trabajo.

Caracterización genotípica de plantas de maíz (Zea mays L.)...

Autores		Morales Yo	kobori, 2001	S	Smith, 1997	"Asian Maize Biotechnology Network", 2001_					
Locus	CIP (líneas y poblaciones sintéticas)	CIP (líneas)	Cantidad de alelos observados	Tamaño aproximado de fragmentos (pb)	CIP	CIP	Cantidad de alelos observados	Tamaño aproximado de fragmentos (pb)			
phi113	0,63	0,66	9	120-342	0,72	0,60	6	120-296			
phi089	0,45	0,46	2	87-95	-	0,41	2	84-88			
phi049	0,00	0,00	1	148	-	0,15	2	141-144			
phi068	0,46	0,54	-	-	-	-	-	-			
phi116	0,52	0,52	3	163-170	-	0,71	5	152-173			
phi093	0,53	0,59	3	280-288	-	0,63	4	272-292			
phi015	0,55	0,64	-	-	0,84	-	-	-			
phi041	0,60	0,70	4	195-216	-	0,66	4	190-220			
phi001	0,70	0,76	-	-	0,87	-	-	-			
bnlg602	0,71	0,78	-	-	0,74	-	-	-			
phi119	0,71	0,74	-	-	0,84	-	-	-			
bnlg609	0,82	0,87	-	-	0,85	-	-	-			

Tabla 2. Comparaciones entre valores de contenido de información polimórfica.

-

0,85

-

-

-

phi026

0,84

0,81

-

Caracterización genotípica de plantas de maíz (Zea mays L.)...

	Locus	CIP (líneas y	CIP (líneas)	Cantidad de alelos	Ubicación genómica	Secuencia	Secuencia de los
1	phi001	0,70	0,76	5	1.03	AG	TGACGGACGTGGATCGCTTCAC // AGCAGGCAGCAGGTCAGCAGCG
	bnlg400	0,80	0,83	7	1.09	d	AGCTGTGACTGTGAAGGGAAAA // CGTCACACCGCTGTTTCTTG
2	umc1065	0,77	0,62	10	2.05	(ACA)17	ACAAGGCCATCATGAAGAGCAGTA // CACGGTCTGGCACACTAACCTTAT
	bnlg1169	0,74	0,74	7	2.08	AG(14)	CTAAGCTAGACACGGCCCTG // GATCTCGTCCCGATTTTCAA
3	phi049	0,00	0,00	1	3.01	ACT	CTTCTGTTCCGCCATCCAGTATGTT // GATTGCGATAACATTGCGGCAAGTTGT
	bnlg602	0,71	0,78	7	3.04	d	CCCGATAGCCAAGCTCTCGCCAA // AGCTCGTGGACCGAACAAGCCCA
	bnlg197	0,77	0,78	5	3.07	d	GCGAGAAGAAAGCGAGCAGA // CGCCAAGAAGAAACACATCACA
4	phi026	0,84	0,81	9	4.05	СТ	TAATTCCTCGCTCCCGGATTCAGC // GTGCATGAGGGAGCAGCAGGTAGTG
	phi093	0,53	0,59	3	4.08	CTAG	AGTGCGTCAGCTTCATCGCCTACAAG // AGGCCATGCATGCTTGCAACAATGGATACA
5	phi113	0,63	0,72	9	5.03 5.04	GTCT	GCTCCAGGTCGGAGATGTGA // CACAACACATCCAGTGACCAGAGT
	bnlg609	0,82	0,87	9	5.06	d	GCTCGTTCTCGCCAGTGTGCCG // GGCCCGAGCCATCTCTGCTGC
6	nc013	0,59	0,67	4	6.05	AG	AATGGTTTTGAGGATGCAGCGTGG // CCCCGTGATTCCCTTCAACTTTC
	phi089	0,45	0,46	2	6.08	ATGC	GAATTGGGAACCAGACCACCCAA // ATTTCCATGGACCATGCCTCGTG
7	phi057	0,55	0,69	5	7.01	GCC	CTCATCAGTGCCGTCGTCCAT // CAGTCGCAAGAAACCGTTGCC
	phi116	0,52	0,52	3	7.06	TGAC- GAC	GCATACGGCCATGGATGGGA // TCCCTGCCGGGACTCCTG
8	phi119	0,71	0,74	4	8.02	AG	GGGCTCCAGTTITCAGTCATTGG // ATCTITCGTGCGGAGGAATGGTCA
	phi015	0,55	0,64	3	8.08 8.09	TTTG	GCAACGTACCGTACCTTTCCGA // ACGCTGCATTCAATTACCGGGAAG
9	phi068	0,46	0,54	3	9.01	АТ	GTACACACGCTCCGACGATTAC // TCTTCTCCACCAGAGCCTTGTAAG
	bnlg127	0,86	0,90	17	9.03	d	CATGTATACGAGAAGCACCCTAT // ATCGTAACTCAGCGGTTTGTG
10	phi041	0,60	0,70	4	10.00	AGCC	TTGGCTCCCAGCGCCGCAAA // GATCCAGAGCGATTTGACGGCA
	bnlg1451	0,54	0,43	4	10.02	AG(34)	TGATCGATGGCTCAATCAGT // ATCTGGAACACCGTCGTCTC
	bnlg1839	0,67	0,49	4	10.07	AG(24)	AGCAGACGGAGGAAACAAGA // TCTCCCTCTCCCTCTTGACA
	Media aritmética	0,63	0,65	6			

Tabla 3. Valores obtenidos de contenido de información polimórfica y cantidad de alelos observados. d: desconocida.

Sobre las muestras amplificadas de las líneas Pergamino se obtuvo para los 21 *loci* analizados en geles de urea-poliacrilamida una media de contenido de información polimórfica de 0,65. Cuando se incluyeron todas las muestras el valor se redujo a 0,63; atribuyéndose esta leve diferencia al monomorfismo observado en algunos *loci* de las respectivas poblaciones sintéticas (Tabla 3).

En la mayoría de los *loci* estudiados en este trabajo las distribuciones de frecuencias alélicas de cada población resultaron ser normales u orientadas (*e.g.* figuras 14-19). En el 80% de los *loci* Compuesto Resistente Paraná (CRP) no compartió el alelo más frecuente (máximo) con ninguna población local (*e.g.* figuras 14, 15, 16, 18, 19, excepción figura 17), aunque sí en algunos casos con Sintética Missouri 17 (*e.g.* figura 14). En el 80% de los *loci* Sintética Colorado Dura compartió el alelo más frecuente con Compuesto Argentino Caribe (*e.g.* figuras 14, 16 y 17) o Compuesto Selección Masal (*e.g.* figura 18) en menor medida. En la mayoría de los *loci* Sintética Missouri 17 y Sintética B73 no compartieron el alelo más frecuente (*e.g.* figuras 15, 16, 17, 18 y 19), resultado esperado debido a la conocida divergencia entre ambas poblaciones. Un estudio detallado de estas distribuciones podría seguir el trabajo de Youchun Li *et al.* (2000).

Figura 14. Distribuciones obtenidas de frecuencias alélicas en phi 113

Figura 15. Distribuciones obtenidas de frecuencias alélicas en bnlg 400.

Figura 16. Distribuciones obtenidas de frecuencias alélicas phi 001.

Figura 17. Distribuciones obtenidas de frecuencias alélicas en umc 1065

Figura 18. Distribuciones obtenidas de frecuencias alélicas en bnlg 602.

Figura 19. Distribuciones obtenidas de frecuencias alélicas en bnlg 127.

Agrupamientos de líneas.

Se calcularon las correlaciones entre la matriz de distancia obtenida con los datos de actividad combinatoria específica (Nestares, 1996) y las matrices de distancia génica obtenidas con distintos coeficientes de correlación (Jackard, 1908; Dice, 1945; Rogers *et al.*, 1960; Russel *et al.*, 1940 y Sneath y Sokal, 1973) obteniéndose resultados similares. Se obtuvo la mejor correlación cuando se utilizó el coeficiente de Jackard, que sin embargo resultó del 44%. En este trabajo la interpretación de los datos se limitó al **modelo de infinitos alelos**, donde cada nueva mutante es única. Dos individuos que presentan un mismo alelo en un dado locus pueden haberlo heredado de un ancestro común, *i.e.* ser idénticos por descendencia o por otro lado haberlo adquirido por diferentes causas, *i.e.* ser idénticos en estado (Bernardo *et al.*, 1996 y Bernardo *et al.*, 1999). El modelo de infinitos alelos aplicado a marcadores genotípicos de repetición de secuencia ("Variable Number Tandem Repeats") tiende a ser violado por el sobrecruzamiento desigual entre cromátides hermanas ("Unequal Sister Chromatid Exchange" o "Unequal Crossing Over"; Harding *et al.*, 1993).

El dendrograma es una descripción ramificada de relaciones de similitud o distancia génica entre individuos (figuras 20, 21 a y 21 b). Los dendrogramas obtenidos con el coeficiente de Jackard (figuras 20 y 21 a) asociaron pares de líneas provenientes de una misma población de origen, resultado que no se observó en el dendrograma obtenido mediante las actividades combinatorias especificas (figura 21 b). Las poblaciones sintéticas se distribuyeron separadamente respecto a las líneas locales en el dendrograma (figura 20), lo cual refleja el bajo grado de parentesco entre las mismas y las poblaciones de origen estadounidense. Los respectivos espectros alélicos de cada una de estas poblaciones resultaron en general poco polimórficos, lo cual refleja el alto grado de parentesco dentro de cada una de ellas.

Figura 20. Dendograma obtenido mediante el coeficiente de Jackard y agrupamiento por promedios aritméticos no ponderados de grupos por pares, a partir de los datos obtenidos de los 21 loci estudiados. El número izquierdo indica el origen de la línea. 1:Sintética Híbridos Comerciales, 2:Compuesto Argentino Caribe, 3:Sintética Colorado Dura, 4:Sintética A, 5:Compuesto Selección Masal, 6:Compuesto Resistente Paraná, 7:Compuesto Poblaciones Coloradas Argentinas, 8: Mejoramiento de P578, 9:Población Local, 10:Material de Colección Exótico, 11:Mejoramiento de línea A1, 12:Compuesto II, 13:Castaño Klein, 14:Argentino Exótico, 15:BSSS (C8), IOWA, EEUU, 16,17:Desconocidas, 18:CI 187-2 ´ C103, Missouri, EEUU. SMo17: Sintética Missouri 17. SB73: Sintética B73.

Figura 21

a: Dendograma obtenido mediante el coeficiente de Jackard. Se pueden observar los pares de líneas agrupadas: 678, LP662; LP146, LP147; LP122, LP123; y LP22, LP32; pertenecientes a un mismo origen respectivamente.

b: dendograma obtenido mediante actividad combinatoria específica. Se puede observar un agrupamiento completamente distinto al anterior.

1: Sintética Híbridos Comerciales, 2: Compuesto Argentino Caribe, 3: Sintética Colorado Dura, 4: Sintética A, 5: Compuesto Selección Masal, 6: Compuesto Resistente Paraná, 7: Compuesto Poblaciones Coloradas Argentinas, 8: Mejoramiento de P578. 9: Población Local, 10: Material de Colección Exótico, 11: Mejoramiento de línea A1, 12: Compuesto II, 13: CastañoXKlein, 14: Argentino X Exótico, 15: BSSS (C8), IOWA, EEUU.

Conclusiones

La descripción restringida del modelo de infinitos alelos sumada a que las secuencias microsatélites elegidas no se encuentran, *a priori*, ligadas a *loci* de caracteres cuantitativos ("Quantitative Trait *Loci*") son las probables razones para explicar la baja correlación obtenida entre matrices de distancia calculadas mediante datos de actividad combinatoria específica y secuencias microsatélites, respectivamente. Habría que evaluar si el correspondiente factor de corrección del modelo de infinitos alelos mejora el resultado obtenido.

No se observó ninguna similitud entre los grupos heteróticos obtenidos mediante actividad combinatoria específica y las poblaciones originarias de las líneas. Los dendrogramas obtenidos sugieren que el análisis de secuencias microsatélites realizado en esta investigación describe más el parentesco de las líneas que el agrupamiento heterótico. Para corroborarlo habría que correlacionar los pedigrees de las líneas con la matriz de similaridad calculada con Jackard u otros coeficientes. De hecho el primer paso a haber efectuado en este trabajo debió ser correlacionar la matriz de distancia calculada mediante los datos de actividad combinatoria específica con los pedigrees de las líneas, evaluando así si las asociaciones heteróticas reflejaban en alguna medida a las poblaciones originarias. La capacidad discriminatoria de las secuencias microsatélites se ve reflejada en el hecho de haber separado cada población sintética del resto de los individuos, como así también en las asociaciones de pares de líneas de un mismo origen poblacional, que no se observa en el dendograma obtenido mediante los datos de actividad combinatoria específica. Los resultados sugieren la utilidad de la caracterización genotípica mediante secuencias microsatélites en la protección de los derechos de propiedad intelectual.

Las distribuciones de frecuencias alélicas sugieren una baja similitud génica entre la población Compuesto Resistente Paraná y las poblaciones Compuesto Selección Masal, Sintética Colorado Dura y Compuesto Argentino Caribe, cómo así también que Compuesto Argentino Caribe y Sintética Colorado Dura son poblaciones genotípicamente similares.

Los cinco *loci* de secuencias microsatélites, cuyas secuencias de repetición no son conocidas al menos públicamente, resultaron ser bastante polimórficos lo cual indicaría la conveniencia de utilizarlos en futuros análisis. Sin embargo, a raíz de los resultados obtenidos, se debe dar prioridad a las secuencias microsatélites ligadas a *loci* de caracteres cuantitativos, si lo que se privilegia es la asignación de líneas de maíz a grupos heteróticos.

Anexos

Pesos moleculares obtenidos a partir del patrón de bandas observado para cada locus.

Orígenes poblacionales de las líneas

- 1. Sintética Híbridos Comerciales
- 2. Compuesto Argentino Caribe
- 3. Sintética Colorado Dura
- 4. Sintética A
- 5. Compuesto Selección Masal
- 6. Compuesto Resistente Paraná
- 7. Compuesto Poblaciones Coloradas Argentinas
- 8. Mejoramiento de P578
- 9. Población Local
- 10. Material de Colección Exótico
- 11. Mejoramiento de línea A1
- 12. Compuesto II
- 13. Castaño X Klein
- 14. Argentino X Exótico
- 15. BSSS (C8), IOWA, EEUU
- 16. Desconocido
- 17. Desconocido
- 18. CI 187-2 X C103, Missouri, EEUU

Caracterización genotípica de plantas de maíz (Zea mays L.)...

С	romosoma	1	l		2			3				4									
Origen	Locus	phi	001	bnlg	400	umc	1065	bnlg	1169	bnlg	602	bnlg 197		bnlg 197		bnlg 197		phi (026	phi	093
de las(CIP (líneas)	0,	76	0,	83	0,0	62	0,	74	0,7	8	0,	78	0,8	1	0,5	59				
líneas	Líneas							Pes	so mo	lecular	:(pb)										
2	LP 117	222	214	107	107	225	225	232	232	143	143	114	114	85	85	280	280				
14	1338	222	214	107	99	230	225	232	232	150	150	114	114	91	91	284	284				
3	LP 34 A	222	214	101	101	227	218	232	232	145	160	128	128	85	85	280	280				
5	LP 110	222	214	97	97	225	218	232	232	150	150	128	108	91	91	284	284				
10	LP 138	222	214	105	105	234	220	224	224	145	145	114	114	87	87	284	284				
6	LP 140	222	214	105	105	218	218	230	230	153	153	dp	dp	dp	dp	284	284				
16	LP 687	222	214	99	99	218	218	232	232	148	148	102	102	98	98	284	284				
17	LP2	222	222	101	101	218	218	234	234	143	143	102	102	85	85	284	284				
3	LP 19	222	222	107	107	218	218	234	234	150	150	108	108	95	95	280	280				
3	LP 32	222	222	97	97	225	225	220	220	150	150	128	121	91	91	284	284				
7	LP 44	228	228	105	105	225	225	232	232	150	150	114	108	98	98	280	280				
3	LP 22	228	228	99	99	252	220	220	220	150	150	128	121	91	85	284	284				
1	678	228	228	105	99	218	218	230	230	dp	dp	102	102	81	81	284	284				
3	LP13	222	222	105	101	220	220	232	232	150	150	121	108	dp	dp	284	284				
3	LP 34 B	dp	dp	105	101	225	225	232	232	145	145	108	108	95	95	280	280				
7	LP 38	228	228	105	105	225	225	220	220	143	143	128	121	98	98	280	280				
4	LP 62	214	214	103	103	220	220	234	234	150	150	108	108	91	91	284	284				
4	LP 70	228	228	109	109	218	218	234	234	153	153	121	108	98	91	288	288				
5	LP103	214	214	101	101	218	218	220	220	148	148	121	108	91	91	288	288				
5	LP 109	228	228	109	109	218	218	230	230	150	150	128	121	87	87	288	288				
2	LP122	222	222	109	109	230	230	220	220	148	148	121	108	87	87	284	280				
2	LP123	dp	dp	109	109	225	225	220	220	148	150	108	108	dp	dp	288	288				
13	LP 125	dp	dp	101	101	223	223	232	232	dp	dp	128	121	91	91	280	280				
6	LP 146	210	210	105	105	218	218	230	230	150	150	121	121	98	98	284	284				
6	LP 147	210	210	105	101	218	218	230	230	153	153	dp	dp	dp	dp	284	284				
8	LP152	218	218	107	107	225	225	232	232	160	160	121	114	102	102	284	284				
11	LP 153	218	218	99	99	218	218	234	234	153	163	121	108	98	98	288	288				
12	LP 199	218	218	99	99	220	207	220	220	148	148	121	114	102	102	280	280				
3	LP 521	218	218	105	101	225	225	230	230	153	153	128	121	91	85	280	280				
1	LP 662	dp	dp	97	97	218	218	232	232	153	153	102	102	dp	dp	284	284				
9	ZN6	222	222	107	101	227	227	232	232	143	143	128	121	98	87	284	284				
18	Mo17	dp	dp	97	97	dp	dp	228	228	143	143	102	102	102	91	280	280				
15	B73	dp	dp	dp	dp	218	218	232	232	143	150	121	121	85	85	284	284				

Tabla 4. Tamaños de fragmentos obtenidos para los cromosomas 1 a 4 (dp: dato perdido).

Caracterización genotípica de plantas de maíz (Zea mays L.)...

Cromosoma 5			6			7				8							
	Lagua	$L_{\text{area}} = \frac{112}{2} + $		57	- la i	116	ab:1	10))15							
Ungen	Locus	pni	115 72	bnig	009	nc	/15 /7	pniu	69	pniu	0	pni	110	pnii	19	pnic)]]]) . 4
de las C	JP (linea	s) 0,	12	0,8	57	0,0) /	0,4 D	0,	0,0	9	0,3	52	0,7	4	0,0	04
lineas	Líneas							Pes	so mol	ecular (pb)							
2	LP 117	132	290	127	127	117	117	95	95	171	171	170	166	161	161	126	122
14	1338	132	120	dp	dp	113	113	95	95	171	171	170	166	161	161	126	110
3	LP 34 A	120	120	139	139	dp	dp	95	95	155	155	dp	dp	165	165	126	110
5	LP 110	132	132	127	127	125	125	95	95	155	155	166	166	167	167	126	110
10	LP 138	120	120	118	118	125	113	87	87	160	160	170	166	167	167	126	122
6	LP 140	120	120	123	123	125	125	95	95	160	160	170	170	167	167	110	110
16	LP 687	132	132	106	97	125	117	95	95	160	160	170	166	171	171	126	122
17	LP2	120	120	114	114	125	117	95	95	171	171	166	166	165	165	110	110
3	LP 19	128	128	106	106	125	125	87	87	155	155	166	166	167	167	110	110
3	LP 32	128	128	dp	dp	113	113	87	87	160	160	170	170	167	167	126	122
7	LP 44	dp	dp	132	132	dp	dp	87	87	160	160	dp	dp	161	161	122	110
3	LP 22	128	128	dp	dp	113	113	87	87	160	160	170	170	167	167	122	122
1	678	132	132	dp	dp	125	125	87	87	163	163	166	166	171	171	122	122
3	LP 13	290	290	106	106	117	117	95	95	163	163	dp	dp	171	171	110	110
3	LP 34 B	dp	dp	139	139	117	117	95	95	160	160	170	166	165	165	110	110
7	LP 38	128	128	118	106	113	113	95	95	155	155	166	166	161	161	126	122
4	LP 62	132	120	dp	dp	113	113	87	87	163	163	170	170	167	167	126	126
4	LP70	132	132	dp	dp	113	113	95	95	163	163	170	170	171	171	126	126
5	LP 103	128	128	dp	dp	117	117	87	87	160	160	166	166	165	165	122	110
5	LP 109	290	290	132	132	117	117	95	95	168	168	166	166	171	171	122	110
2	LP 122	128	128	123	123	dp	dp	95	95	160	160	170	170	171	171	110	110
2	LP 123	128	128	127	127	dp	dp	dp	dp	160	160	170	170	171	171	110	110
13	LP 125	132	290 ¹	99	99	113	113	95	95	160	160	166	166	165	165	122	122
6	LP 146	120	120	dp	dp	113	113	87	87	163	163	170	170	171	171	110	110
6	LP 147	120	120	dp	dp	113	113	95	95	168	163	170	166	171	171	110	110
8	LP 152	120	120	114	97	dp	dp	95	95	163	163	166	166	161	161	122	110
11	LP 153	132	132	118	118	113	113	95	95	163	163	170	170	171	171	122	122
12	LP 199	dp	dp	dp	dp	107	107	95	95	160	160	170	166	165	165	122	122
3	LP 521	120	342	dp	dp	107	107	95	95	160	160	170	166	167	167	122	122
1	LP 662	132	132	106	106	113	113	87	87	163	163	170	170	165	165	122	122
9	ZN6	128	128	dp	dp	107	107	95	95	160	160	170	170	161	161	122	122
18	Mo17	120	120	dp	dp	113	113	dp	dp	dp	dp	0	0	167	167	122	122
15	B73	120	120	114	114	113	113	87	87	160	160	166	166	165	165	126	126

¹Fue observada también una banda correspondiente a 342 pb.

Tabla 5. Tamaños de fragmentos obtenidos para los cromosomas 5 a 8 de las líneas (dp: dato perdido).

Caracterización genotípica de plantas de maíz (Zea mays L.)...

	Cromosoma			9				10					
_	Locus	phi	068	bnlg	;127	phi0	41	bnlg	1451	bnlg	1839		
Origen de las	CIP (líneas)	0,	54	0,	,9	0,7	7	0,4	43	0,4	49		
líneas	Líneas					Pesc	molecula	ır (pb)					
2	LP 117	70	70	271	271	212	212	120	120	dp	dp		
14	1338	66	66	248	248	212	200	120	120	179	179		
3	LP 34 A	70	70	274	213	212	200	113	108	183	183		
5	LP 110	75	75	259	255	200	200	113	113	179	179		
10	LP 138	70	70	248	248	212	200	113	113	175	175		
6	LP 140	75	75	248	248	dp	dp	113	113	179	179		
16	LP 687	70	70	243	243	212	200	113	113	179	179		
17	LP2	70	70	209	209	212	200	122	122	179	179		
3	LP 19	75	75	209	209	196	196	113	113	179	179		
3	LP 32	70	70	216	216	212	212	113	113	183	183		
7	LP 44	75	75	209	209	196	196	113	113	183	183		
3	LP 22	75	75	216	216	200	200	113	113	183	183		
1	678	70	70	dp	dp	196	196	113	113	179	179		
3	LP13	70	70	271	271	dp	dp	113	113	179	179		
3	LP 34 B	dp	dp	213	213	196	196	113	108	183	183		
7	LP 38	70	70	213	213	dp	dp	dp	dp	179	179		
4	LP 62	75	75	245	245	196	196	113	113	179	179		
4	LP 70	70	70	265	265	196	196	113	113	179	179		
5	LP 103	70	70	213	213	212	200	113	113	187	179		
5	LP 109	70	70	261	261	212	200	113	113	179	179		
2	LP 122	70	70	213	213	196	196	113	113	183	183		
2	LP 123	dp	dp	dp	dp	200	200	113	113	179	179		
13	LP 125	dp	dp	213	213	dp	dp	113	113	179	179		
6	LP 146	75	75	243	243	dp	dp	108	108	179	179		
6	LP 147	dp	dp	240	240	212	196	113	113	179	179		
8	LP 152	66	66	240	240	196	196	120	120	179	179		
11	LP 153	70	70	218	218	212	200	113	113	dp	dp		
12	LP 199	75	75	218	218	196	196	dp	dp	175	175		
3	LP 521	70	70	218	218	dp	dp	120	120	179	179		
1	LP 662	70	70	236	236	216	200	113	113	175	175		
9	ZN6	66	66	218	218	dp	dp	113	113	dp	dp		
18	Mo17	dp	dp	226	226	dp	dp	dp	dp	dp	dp		
15	B73	70	70	209	209	200	200	108	108	179	179		

Tabla 6. Tamaños de fragmentos obtenidos para los cromosomas 9 y 10 de las líneas (dp: dato perdido).

Caracterización genotípica de plantas de maíz (Zea mays L.)...

Cromosoma 1			2				3				4				
Locus phi	001	bnlg	400	umc1	.065	bnlg	1169	bnlg	602	bnlgí	197	phi (026	phi	093
CIP (total) 0,7	70	0,8	30	0,7	7	0,	74	0,7	1	0,7	7	0,8	34	0,	53
Individuos						Pes	o mole	ecular (j	ob)						
S Mo17 1A 222	218	dp	dp	225	216	230	230	143	143	114	114	91	91	280	280
S Mo17 1B 222	218	dp	dp	225	216	230	230	143	143	114	114	91	91	280	280
S Mo17 3A 222	218	107	97	218	218	230	230	143	143	121	121	98	91	280	280
S Mo17 3B 222	218	101	97	218	218	230	230	143	143	108	108	98	91	280	280
S Mo17 4A 222	218	dp	dp	230	216	230	230	143	143	114	114	77	77	280	280
S Mo17 4B 222	218	dp	dp	230	216	230	230	143	143	108	108	77	77	280	280
S Mo17 5A 222	218	107	97	207	207	230	230	143	143	121	121	91	91	280	280
S Mo17 5B 222	218	101	97	207	207	230	230	143	143	108	108	91	91	280	280
S Mo17 6A 218	218	dp	dp	230	218	230	230	143	143	114	114	dp	dp	280	280
S Mo17 6B 218	218	dp	dp	230	218	230	230	143	143	108	108	dp	dp	280	280
S Mo17 7A 222	222	99	99	210	210	230	230	143	143	121	121	102	91	280	280
S Mo17 7B 222	222	97	97	210	210	230	230	143	143	108	108	102	91	280	280
S Mo17 8A 218	218	107	107	216	216	230	230	143	153	114	114	102	91	280	280
S Mo17 8B 218	218	107	107	216	216	230	230	143	153	114	114	102	91	280	280
S Mo17 9A 222	222	99	99	230	216	230	230	143	148	108	108	dp	dp	280	280
S Mo17 9B 222	222	97	97	230	216	230	230	143	148	102	102	dp	dp	280	280
S Mo17 10A222	218	97	97	230	218	230	230	143	148	108	108	102	91	280	280
S Mo17 10B 222	218	97	97	230	218	230	230	143	148	102	102	102	91	280	280
S Mo17 11A218	218	97	97	230	216	230	230	143	153	108	108	102	102	280	280
S Mo17 11B218	218	97	97	230	216	230	230	143	153	102	102	102	102	280	280
S Mo17 12A218	218	99	99	225	218	230	230	143	153	114	114	dp	dp	280	280
S Mo17 12B 218	218	99	99	225	218	230	230	143	153	102	102	dp	dp	280	280
S Mo17 13A222	222	10/	107	230	216	230	230	143	143	108	108	102	91	280	280
S Mo1 / 13B 222	222	99	99	230	216	230	230	143	143	102	102	102	91	280	280
SB/31A 228	222	99	99	218	207	228	228	143	153	121	121	//	//	280	280
SB/31B 228	222	97	9/	218	207	228	228	143	153	114	114	//	01	280	280
SD/SZA 228 SD73 2D 229	222	99	107	227	207	228	210	155	155	121	114	91	01 01	280	280
SD/SZD 220 SB73 3A 229	222	99 107	97 107	de	207 do	220	210	155	155	114	102	91 73	01 72	200	200
S B73 3B 228	222	00	00	dp dp	dp dp	220 228	220	155	155	121	121	73	73	204 280	204 280
S B73 4 A 222	222	99	99	up 218	up 218	220	220	1/3	153	121	121	7.5 81	7.5 81	280	284
S B73 4R 222	222	99	99	210	210	220	220	143	153	121	121	81	81	280	280
S B73 5A 228	222	90	107	225	220	228	228	143	153	121	114	81	81	288	288
S B73 5B 228	222	99	97	225	220	228	228	143	153	114	102	81	81	280	200 280
SB736A 228	222	99	107	225	223	228	228	143	153	114	114	85	81	288	288
SB736B 228	222	99	97	225	223	228	228	143	153	114	114	85	81	280	280
S B737A 228	222	99	99	225	218	228	228	143	153	121	121	91	77	280	280
S B73 7B 228	222	99	99	225	218	228	228	143	153	121	121	91	77	280	280
S B73 8A 228	222	99	107	225	225	228	228	143	153	114	114	81	73	284	284
S B73 8B 228	222	99	97	225	225	228	228	143	153	108	108	81	73	280	280
S B73 9A 228	222	107	107	225	223	228	228	143	153	121	121	81	81	284	284
SB739B 228	222	99	99	225	223	228	228	143	153	114	114	81	81	280	280
		-	-							-					

SMo17: Población Sintética Missouri 17 SB73: Población sintética B 73

Tabla 7. Tamaños de fragmentos obtenidos para los cromosomas 1 a 4 de las poblaciones sintéticas (dp: dato perdido).

Caracterización genotípica de plantas de maíz (Zea mays L.)...

	Cromosoma			5			6			7				8				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Locus	ph	i 113	bnlg	609	nc)13	phi	089	phi()57	phi	116	phi	119	phi()15	
Línea Peso molecular (pb) S Mol 71 IA 120 120 dp dp 113 113 87 87 160 160 170 166 167 167 122 122 S Mol 71 IB 120 120 dp dp 113 113 87 87 160 160 170 167 167 122 122 S Mol 73 IB 120 120 dp dp 113 113 87 87 163 163 170 170 167 167 122 122 S Mol 74A 120 120 dp dp 113 113 87 87 163 163 170 170 167 167 122 122 22 S Mol 76A 120 120 dp dp 113 113 87 87 160 160 170 166 171 167 122 122 128 S Mol 77A 120 120 <	CIP (total)	0	,63	0,8	32	0,5	59	- 0,4	45	0,5	55	- 0,5	52	0,	71	0,5	55	
S Moi 7i A 120 120 dp dp 113 113 87 87 160 160 170 166 167 167 122 122 S Moi 7i Ai 120 dp dp dp 113 113 87 87 160 160 170 166 167 167 122 122 S Moi 7i Ai 120 dp dp 113 113 48 pd 160 160 170 166 167 167 122 122 S Moi 7i Ai 120 120 dp dp 113 113 87 87 163 163 170 170 167 167 122 122 2 S Moi 75 120 120 dp dp 113 113 87 87 160 160 170 166 171 167 122 122 2 S Moi 76 120 120 dp dp 113 113 <td< td=""><td>Líneas</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pes</td><td>so mole</td><td>ecular (</td><td>pb)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Líneas							Pes	so mole	ecular (pb)							
S Mo17 1B 120 120 dp dp 113 113 87 87 160 160 160 167 167 167 122 122 122 S Mo17 3A 120 120 dp dp 113 113 dp dp 160 160 170 170 167 167 122 122 122 S Mo17 4A 120 120 dp dp 113 113 87 87 163 163 170 170 167 167 122 122 128 S Mo17 5A 120 120 dp dp 113 113 87 87 163 163 170 170 171 167 122 122 22 S Mo17 6A 120 120 dp dp 113 113 87 87 160 160 170 166 171 167 122 122 22 S Mo17 7A 120 120 dp dp 113 113 95 95 160 160 170 166 161 122	S Mo17 1A	120	120	dp	dp	113	113	87	87	160	160	170	166	167	167	122	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Mo17 1B	120	120	dp	dp	113	113	87	87	160	160	170	166	167	167	122	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Mo17 3A	120	120	dp	dp	113	113	dp	dp	160	160	170	170	167	167	122	122	
S Moi 7 4A 120 120 dp dp 113 113 87 87 163 163 170 170 167 167 122 122 S Moi 7 5A 120 120 dp dp dp 113 113 87 87 163 163 170 170 171 167 122 122 S Moi 7 5A 120 120 dp dp 113 113 87 87 160 160 170 166 171 167 122 122 S Moi 76A 120 dp dp dp 113 113 95 95 160 160 170 166 161 161 122 122 S Moi 78B 120 120 dp dp 171 167 122 122 S Moi 78B 120 120 dp dp 113 113 87 87 163 163 170 166 161 161 <t< td=""><td>S Mo17 3B</td><td>120</td><td>120</td><td>dp</td><td>dp</td><td>113</td><td>113</td><td>dp</td><td>dp</td><td>160</td><td>160</td><td>170</td><td>170</td><td>167</td><td>167</td><td>122</td><td>122</td></t<>	S Mo17 3B	120	120	dp	dp	113	113	dp	dp	160	160	170	170	167	167	122	122	
SMo174B 120 120 dp dp 113 113 87 87 163 163 170 170 167 167 122 122 122 122 122 122 122 122 122 122 122 122 122 120 120 dp dp 113 113 87 87 163 163 160 160 170 166 171 167 122 122 SM0176A 120 dp dp dp 113 113 87 87 160 160 170 166 161 161 122 122 22 SM0178A 120 120 dp dp 113 113 95 95 160 160 170 166 161 161 122 122 22 SM0179A 120 120 dp dp 113 113 87 87 163 163 170 166 161	S Mo17 4A	120	120	dp	dp	113	113	87	87	163	163	170	170	167	167	122	122	
S Mo17 5A 120 120 dp dp dp 113 113 87 87 163 163 170 171 167 122 122 S Mo17 5B 120 120 dp dp 113 113 87 87 160 160 170 166 171 167 122 122 S Mo17 6B 120 120 dp dp 113 113 85 95 160 160 170 166 171 167 122 122 S Mo17 7A 120 120 dp dp 113 113 95 95 160 160 170 166 161 161 122 122 S Mo17 9A 120 120 dp dp 113 113 87 87 163 163 170 166 161 122 122 S Mo17 9B 120 120 dp dp 113 113 87 87 16	S Mo17 4B	120	120	dp	dp	113	113	87	87	163	163	170	170	167	167	122	122	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S Mo17 5A	120	120	dp	dp	113	113	87	87	163	163	170	170	171	167	122	122	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S Mo17 5B	120	120	dp	dp	113	113	87	87	163	163	170	170	171	167	122	122	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S Mo17 6A	120	120	dp	dp	113	113	87	87	160	160	170	166	171	167	122	122	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S Mo17 6B	120	120	dp	dp	113	113	87	87	160	160	170	166	171	167	122	122	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S Mo17 7A	120	120	dp	dp	113	113	95	95	160	160	170	166	171	167	122	122	
S Mo17 8A 120 120 dp dp 113 113 95 95 160 160 170 166 161 161 122 122 S Mo17 9B 120 120 dp dp dp 113 113 87 87 163 163 170 166 167 161 122 122 S Mo17 9B 120 120 dp dp 113 113 87 87 160 160 170 166 167 161 122 122 S Mo17 10A 120 dp dp dp 113 113 87 87 160 160 170 166 167 161 122 122 S Mo17 11A 120 dp dp 113 113 87 87 163 163 160 163 167 167 122 122 122 S Mo17 13A 120 dp dp 107 107	S Mo17 7B	120	120	dp	dp	113	113	95	95	160	160	170	166	171	167	122	122	
SMo17 8B 120 120 dp dp 113 113 95 95 160 160 170 166 161 161 122 122 SMo17 9A 120 120 dp dp dp 113 113 87 87 163 163 170 166 167 161 122 122 SMo17 10A 120 120 dp dp dp 113 113 87 87 160 160 170 166 167 161 122 122 SMo17 10A 120 120 dp dp 113 113 87 87 163 163 170 166 167 161 122 122 SMo17 12A 120 dp dp 113 113 87 87 163 163 166 163 167 167 122 122 SMo17 12A 120 dp dp 113 113 87 87 163 163 166 163 167 167 122 122 SMo17 13A 120 <td>S Mo17 8A</td> <td>120</td> <td>120</td> <td>dp</td> <td>dp</td> <td>113</td> <td>113</td> <td>95</td> <td>95</td> <td>160</td> <td>160</td> <td>170</td> <td>166</td> <td>161</td> <td>161</td> <td>122</td> <td>122</td>	S Mo17 8A	120	120	dp	dp	113	113	95	95	160	160	170	166	161	161	122	122	
S MoI7 9A 120 dp dp l13 113 87 87 163 163 170 166 167 161 122 122 S Mo17 9B 120 dp dp pt 113 113 87 87 163 163 170 166 167 161 122 122 S Mo17 10B 120 dp dp pt 113 113 87 87 160 160 170 166 167 161 122 122 S Mo17 11A 120 dp dp pt 113 113 87 87 163 163 170 166 167 161 122 122 S Mo17 12A 120 dp dp pt 113 113 87 87 163 163 166 163 167 167 122 122 S Mo17 12A 120 120 dp dp 113 113 87 87 163 163 170 170 167 122 122 S Mo17 13B 120 1	S Mo17 8B	120	120	dp	dp	113	113	95	95	160	160	170	166	161	161	122	122	
S Mol7 9B 120 dp dp lp 113 113 87 87 163 163 170 166 167 161 122 122 S Mol7 10A 120 dp dp p 113 113 87 87 160 160 170 166 171 161 122 122 S Mol7 11A 120 dp dp p 113 113 87 87 163 163 170 166 167 161 122 122 S Mol7 11A 120 lp dp lp 113 113 87 87 163 163 166 163 167 161 122 122 S Mol7 12A 120 dp dp lp 113 113 87 87 163 163 166 163 167 167 162 122 122 122 S Mol7 13A 120 120 dp dp 107 167 87 163 163 170 170 167 167 122 122	S Mo17 9A	120	120	dp	dp	113	113	87	87	163	163	170	166	167	161	122	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Mo17 9B	120	120	dp	dp	113	113	87	87	163	163	170	166	167	161	122	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Mo17 10A	120	120	dp	dp	113	113	87	87	160	160	170	166	171	161	122	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Mo17 10B	120	120	dp	dp	113	113	87	87	160	160	170	166	171	161	122	122	
S Mol7 11B 120 dp dp dp 113 113 87 87 163 163 170 166 167 161 122 122 S Mo17 12A 120 dp dp dp 113 113 87 87 163 163 166 163 167 167 122 122 S Mo17 12B 120 120 dp dp 107 107 87 87 163 163 166 163 167 167 122 122 S Mo17 13B 120 120 dp dp 107 107 87 87 163 163 170 170 167 122 122 128 SMo17 13B 120 120 144 107 107 87 87 160 160 170 166 165 165 126 <td>S Mo17 11A</td> <td>120</td> <td>120</td> <td>dp</td> <td>dp</td> <td>113</td> <td>113</td> <td>87</td> <td>87</td> <td>163</td> <td>163</td> <td>170</td> <td>166</td> <td>167</td> <td>161</td> <td>122</td> <td>122</td>	S Mo17 11A	120	120	dp	dp	113	113	87	87	163	163	170	166	167	161	122	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Mo17 11B	120	120	dp	dp	113	113	87	87	163	163	170	166	167	161	122	122	
S Mo1/12B 120 dp dp dp dp 113 113 87 87 163 163 166 163 167 167 122 122 S Mo17 13A 120 dp dp dp 107 107 87 87 163 163 170 170 167 167 122 122 S Mo17 13B 120 342 114 114 107 107 87 87 160 160 170 166 165 165 126 126 S B73 1B 120 290 114 114 107 107 87 87 160 160 170 166 165 165 126 126 S B73 2B 120 120 132 132 107 107 87 87 160 160 170 166 165 165 126 126 S B73 3A 132 290 ¹ 114 114 107 107 87 87 160 160 170 166 165 1	S Mo17 12A	120	120	dp	dp	113	113	87	87	163	163	166	163	167	167	122	122	
S Mo1/13A 120 120 dp dp 107 107 87 87 163 163 170 170 167 167 122 122 S Mo17 13B 120 120 dp dp 107 107 87 87 163 163 170 170 167 167 122 122 S B73 1A 120 342 114 114 107 107 87 87 160 160 170 166 165 165 126 126 S B73 1B 120 120 132 132 107 107 87 87 160 160 170 166 165 165 126 126 S B73 2B 120 120 114 114 107 107 87 87 160 160 170 166 165 165 122 122 122 S S 33 120 290 ¹ 97 97 107 107 87 87 160 160	S Mo17 12B	120	120	dp	dp	113	113	87	87	163	163	166	163	167	167	122	122	
S Mo1/13B 120 dp dp dp 10/ 10/ 8/ 8/ 163 163 1/0 1/0 16/ 122 122 S B73 1A 120 342 114 114 107 107 87 87 160 160 170 166 165 165 126 126 S B73 1B 120 290 114 114 107 107 87 87 160 160 170 166 165 165 126 126 S B73 2B 120 120 114 114 107 107 87 87 160 160 170 166 165 165 122 122 126 S B73 3A 132 2901 114 114 107 107 87 87 160 160 170 166 165 165 122 122 122 S B73 3B 120 2901 97 97 107 107 87 87 160 160 170 166 167 167 122 122<	S Mo17 13A	120	120	dp	dp	107	107	87	87	163	163	170	170	167	167	122	122	
SB731A 120 342 114 114 107 107 87 87 160 160 170 166 165 165 126 126 SB731B 120 290 114 114 107 107 87 87 160 160 170 166 165 165 126 126 SB732A 120 120 132 132 107 107 87 87 160 160 170 166 165 165 126 126 SB732B 120 120 114 114 107 107 87 87 160 160 170 166 165 165 126 126 126 SB733A 132 290 ¹ 97 97 107 107 87 87 160 160 170 166 165 165 122 122 122 S733A 132 290 ¹ 97 97 107 107 87 87 160 160 170 166 165 165	S Mo1 / 13B	120	120	dp	dp	107	107	8/	8/	163	163	170	1/0	16/	16/	122	122	
S B73 1B 120 290 114 114 107 87 87 160 160 170 166 165 165 126 126 S B73 2A 120 120 132 132 107 107 87 87 160 160 170 166 165 165 126 126 S B73 2B 120 120 114 114 107 107 87 87 160 160 170 166 165 165 126 126 S B73 3A 132 290 ¹ 114 114 107 107 87 87 160 160 170 166 165 165 122 122 122 S S 7 167 126	5 B/3 IA	120	342 200	114	114	107	107	8/	8/	160	160	170	100	165	165	126	126	
SB732A 120 122 132 107 107 87 87 160 160 170 166 165 165 126 126 SB732B 120 120 114 114 107 107 87 87 160 160 170 166 165 165 126 126 SB733A 132 2901 114 114 107 107 87 87 160 160 170 166 165 165 122 122 122 SB733B 120 2901 97 97 107 107 87 87 160 160 170 166 165 165 122 122 122 SB734A 120 120 114 114 107 107 87 87 160 160 170 166 167 167 122 122 122 SB735A 132 3082 114 113 113 87 87 160 160 170 166 165 165 126 126 126	5 B/3 IB	120	290	114	114	107	107	8/ 07	8/	160	160	170	100	105	105	120	120	
SB732B 120 114 114 107 107 87 87 160 160 170 166 165 165 120 120 120 114 114 107 107 87 87 160 160 170 166 165 165 122 122 SB733A 132 2901 97 97 107 107 87 87 160 160 170 166 165 122 12	5 B/5 ZA	120	120	132	132	107	107	8/ 07	8/	160	160	170	100	105	105	120	120	
SB73 3A 132 290 114 114 107 107 87 87 100 <td< td=""><td>5 D / 5 2D 5 D 7 2 2 A</td><td>120</td><td>120 2001</td><td>114</td><td>114</td><td>107</td><td>107</td><td>0/ 07</td><td>0/ 07</td><td>160</td><td>160</td><td>170</td><td>100</td><td>165</td><td>165</td><td>120</td><td>120</td></td<>	5 D / 5 2D 5 D 7 2 2 A	120	120 2001	114	114	107	107	0/ 07	0/ 07	160	160	170	100	165	165	120	120	
SB733B 120 290 97 97 107 107 87 87 100 10	S B73 3R	132	290 2001	07	07	107	107	07 87	07 87	160	160	170	166	165	165	122	122	
SB734A 120 120 114 114 107 107 87 87 160 160 170 160 160 160 167 167 122 122 SB734B 120 120 97 97 107 107 87 87 160 160 170 166 167 167 122 122 122 SB735A 132 3082 114 114 113 113 87 87 160 160 170 166 165 126 126 SB735B 120 2902 97 97 113 113 87 87 160 160 170 166 165 126 126 SB736A 120 3422 246 246 113 113 87 87 160 160 166 166 167 167 126 126 SB736B 120 2902 114 97 113 113 87 87 160 160 166 167 167 126	S B73 4 A	120	120	11/	11/	107	107	87	87	160	160	170	166	167	167	122	122	
S B73 4B 120 120 97 97 107 107 107 107 107 107 107 107 107 107 107 107 100 100 100 100 100 107 107 107 107 107 107 107 107 107 107 107 107 100 100 100 100 107 <t< td=""><td>S B73 4B</td><td>120</td><td>120</td><td>97</td><td>97</td><td>107</td><td>107</td><td>87</td><td>87</td><td>160</td><td>160</td><td>170</td><td>166</td><td>167</td><td>167</td><td>122</td><td>122</td></t<>	S B73 4B	120	120	97	97	107	107	87	87	160	160	170	166	167	167	122	122	
S B73 5B 120 290 ² 97 97 113 113 87 87 160 160 170 166 165 126 126 S B73 5B 120 290 ² 97 97 113 113 87 87 160 160 170 166 165 126 126 S B73 6A 120 342 ² 246 246 113 113 87 87 160 160 166 165 165 126 126 S B73 6B 120 290 ² 114 97 113 113 87 87 160 160 166 166 167 167 126 126 S B73 6B 120 290 ² 114 97 113 113 87 87 160 160 166 167 167 126 126 S B73 7A 120 325 114 114 107 107 87 87 160 160 170 166 167 165 dp dp gb 73 87	S B73 5A	132	308^2	114	114	113	113	87	87	160	160	170	166	165	165	126	126	
S B73 5B 120 290 97 115 115 67 160 <t< td=""><td>S B73 5R</td><td>120</td><td>290^{2}</td><td>97</td><td>97</td><td>113</td><td>113</td><td>87</td><td>87</td><td>160</td><td>160</td><td>170</td><td>166</td><td>165</td><td>165</td><td>120</td><td>120</td></t<>	S B73 5R	120	290^{2}	97	97	113	113	87	87	160	160	170	166	165	165	120	120	
S B73 6B 120 290 ² 114 97 113 113 87 87 160 160 166 167 167 126 126 S B73 6B 120 290 ² 114 97 113 113 87 87 160 160 166 167 167 126 126 S B73 7A 120 325 114 114 107 107 87 87 160 160 170 166 167 165 dp dp S B73 7B 120 286 97 97 107 107 87 87 160 160 170 166 167 165 dp dp S B73 8A 120 290 114 114 107 107 87 87 160 160 170 166 167 165 122 122 122 S B73 8B 120 290 97 97 107 107 87 87 160 160 170 166 167 165 122 122 <td>S B736A</td> <td>120</td> <td>342^2</td> <td>246</td> <td>246</td> <td>113</td> <td>113</td> <td>87</td> <td>87</td> <td>160</td> <td>160</td> <td>166</td> <td>166</td> <td>167</td> <td>167</td> <td>126</td> <td>120</td>	S B736A	120	342^2	246	246	113	113	87	87	160	160	166	166	167	167	126	120	
S B73 7A 120 325 114 114 107 87 87 160 160 170 166 167 165 dp dp S B73 7A 120 325 114 114 107 107 87 87 160 160 170 166 167 165 dp dp S B73 7B 120 286 97 97 107 107 87 87 160 160 170 166 167 165 dp dp dp S B73 8A 120 290 114 114 107 107 87 87 160 160 170 166 167 165 dp dp dp S B73 8A 120 290 97 97 107 107 87 87 160 160 170 166 167 165 122 122 S B73 8B 120 290 97 97 107 107 87 87 160 160 170 166 167 165 122 <td< td=""><td>S B736B</td><td>120</td><td>290^{2}</td><td>114</td><td>97</td><td>113</td><td>113</td><td>87</td><td>87</td><td>160</td><td>160</td><td>166</td><td>166</td><td>167</td><td>167</td><td>126</td><td>126</td></td<>	S B736B	120	290^{2}	114	97	113	113	87	87	160	160	166	166	167	167	126	126	
S B73 7B 120 286 97 97 107 107 87 87 160 160 170 166 167 165 dp d	S B737A	120	325	114	114	107	107	87	87	160	160	170	166	167	165	dn	dn	
S B73 8A 120 290 114 114 107 107 87 87 160 160 170 166 167 165 122 122 S B73 8A 120 290 97 97 107 107 87 87 160 160 170 166 167 165 122 122 S B73 8B 120 290 97 97 107 107 87 87 160 160 170 166 167 165 122 122 S B73 9A 132 132 114 114 dp dp 87 87 160 160 170 166 167 165 122 122 S B73 9B 120 120 97 97 dp dp 87 87 160 160 170 166 167 165 122 122 122 S B73 9B 120 120 97 97 dp dp 87 87 160 160 170 166 167 165 <	S B73 7B	120	286	97	97	107	107	87	87	160	160	170	166	167	165	dp	dp	
S B73 8B 120 290 97 97 107 107 87 87 160 160 170 166 167 165 122 122 S B73 9A 132 132 114 114 dp dp 87 87 160 160 170 166 167 165 122 122 S B73 9A 132 132 114 114 dp dp 87 87 160 160 170 166 167 165 122 122 S B73 9B 120 120 97 97 dp dp 87 87 160 160 170 166 167 165 122 122	S B73 8A	120	290	114	114	107	107	87	87	160	160	170	166	167	165	122	122	
S B73 9A 132 132 114 114 dp dp 87 87 160 160 170 166 167 165 122 122 S B73 9B 120 120 97 97 dp dp 87 87 160 160 170 166 167 165 122 122	S B73 8B	120	290	97	97	107	107	87	87	160	160	170	166	167	165	122	122	
S B73 9B 120 120 97 97 dp dp 87 87 160 160 170 166 167 165 122 122	S B73 9A	132	132	114	114	dp	dp	87	87	160	160	170	166	167	165	122	122	
- $ -$	S B73 9B	120	120	97	97	dp	dp	87	87	160	160	170	166	167	165	122	122	

SMo17: Población Sintética Missouri 17 SB73: Población sintética B 73

 $^{1}\,\mathrm{Fue}\,\mathrm{doservada}\,\mathrm{tarbién}\,\mathrm{ura}\,\mathrm{banda}\,\mathrm{correspondiente}\,\mathrm{a}\,331\,\mathrm{pb}.$

² Fueron observadas tanbién banda s correspondientes a 342 pb.

Tabla 8. Tamaños de fragmentos obtenidos para los cromosomas 5 a 8 de las poblaciones sintéticas (dp: dato perdido).

Cromosoma			9		10							
Locus	phi	068	bnlg	127	phi	041	bnlg 1	451	bnlg 1839			
CIP (total)	0,4	46	0,8	86	0,	6	0,5	4	0,0	57		
Líneas					Peso	molecular	: (pb)					
S Mo17 1A	70	70	218	218	196	196	113	113	183	183		
S Mo17 1B	70	70	218	218	196	196	113	113	183	183		
S Mo17 3A	66	66	218	218	196	196	dp	dp	183	183		
S Mo17 3B	66	66	218	218	196	196	dp	dp	183	183		
S Mo17 4A	70	70	dp	dp	196	196	113	113	183	183		
S Mo17 4B	70	70	dp	dp	196	196	113	113	183	183		
S Mo17 5A	66	66	243	243	196	196	113	113	dp	dp		
S Mo17 5B	66	66	243	243	196	196	113	113	dp	dp		
S Mo17 6A	66	66	218	218	196	196	dp	dp	dp	dp		
S Mo17 6B	66	66	218	218	196	196	dp	dp	dp	dp		
S Mo17 7A	70	70	218	218	196	196	113	113	183	183		
S Mo17 7B	70	70	218	218	196	196	113	113	183	183		
S Mo17 8A	70	70	218	218	196	196	113	113	183	183		
S Mo17 8B	70	70	218	218	196	196	113	113	183	183		
S Mo17 9A	70	70	240	240	196	196	113	113	183	183		
S Mo17 9B	70	70	240	240	196	196	113	113	183	183		
S Mo17 10A	70	70	243	243	196	196	113	113	183	183		
S Mo17 10B	70	70	218	218	196	196	113	113	183	183		
S Mo17 11A	70	70	218	218	196	196	113	113	183	183		
S Mo17 11B	70	70	218	218	196	196	113	113	183	183		
S Mo17 12A	70	70	245	245	196	196	113	113	183	183		
S Mo17 12B	70	70	218	218	196	196	113	113	183	183		
S Mo17 13A	70	70	218	218	196	196	113	113	dp	dp		
S Mo17 13B	70	70	218	218	196	196	113	113	dp	dp		
S B73 1A	70	70	253	253	200	200	113	113	dp	dp		
S B73 1B	70	70	253	253	200	200	113	113	dp	dp		
S B73 2A	70	70	253	253	200	200	108	108	175	175		
S B73 2B	70	70	253	253	200	200	108	108	175	175		
S B73 3A	70	66	253	253	200	200	108	108	183	175		
S B73 3B	70	66	253	253	200	200	108	108	183	175		
S B73 4A	70	66	240	240	200	200	108	108	dp	dp		
S B73 4B	70	66	240	240	200	200	108	108	dp	dp		
S B73 5A	70	66	253	253	200	200	108	108	183	175		
S B73 5B	70	66	240	240	200	200	108	108	183	175		
S B73 6A	70	70	253	253	200	200	108	108	dp	dp		
S B73 6B	70	70	218	218	200	200	108	108	dp	dp		
S B73 7A	70	70	255	255	200	200	108	108	175	175		
S B73 7B	70	70	255	255	200	200	108	108	175	175		
S B73 8A	70	70	253	253	200	200	108	108	175	175		
S B73 8B	70	70	253	253	200	200	108	108	175	175		
S B73 9A	dp	dp	255	253	200	200	108	108	dp	dp		
S B73 9B	dp	dp	253	243	200	200	108	108	dp	dp		

SMo17: Población Sintética Missouri 17

SB73: Población sintética B 73

Tabla 9. Tamaños de fragmentos obtenidos para los cromosomas 9 a 10 de las poblaciones sintéticas (dp: dato perdido).

Operadores lógicos

Y ("and")	1	0
1	1	0
0	0	0
O ("or")	1	0
1	1	1
0	1	0
Neg O		
("nor")	1	0
1	0	0
0	0	1

Operadores lógicos Y: coincidencias positivas. NegO: coincidencias negativas

Referencias

Asian Maize Biotechnology Network (Ambionet), CIMMYT, 2001. www.cimmyt.cgiar.org/ambionet/ picvalues78'33.pdf.

Ben Hui Liu, 1987. Statistical Genomics. CRC Press.

Bernardo R., Murigneux A. y Karaman Z., 1996. Marker-based estimates of identity by descent and alikeness in state among maize inbreds. *Theor Appl Genet* **93**: 262-267.

Bernardo R., Romero-Severson, Ziegle J. Hauser J., Joe L., Hookstra G., Doerge R.W., 1999. Parental contribution and coefficient of coancestry among inbreds: pedigree, RFLP and SSR data. *Theor Appl Genet* **100:** 552-556.

Cardle L., Ramsay L., Milborne, D. Macaulay M., Marshall D. y Waugh R., 2000. Computational and Experimental Characterization of Physically Clustered Simple Sequence Repeat in Plants. *Genetics* **156**: 847-854.

cgil.uoguelph.ca/QTL/Microsatellites.htm2000.

Clarke L.A., Rebelo C.S., Goncalves J., Boavida M.G. y Jordan P., 2001. PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. *Journal of Clinical Pathology* **54**: 351-353.

Cregan, P. and Quigley, C.V., 1997. Simple sequence marker analysis in "DNA markers Protocols, applications and overviews". Gustavo C. *Anollés and Peter M. Gresshoff Eds.*

Chin E.C.L., Senior M.L., Shu H. y Smith J.S.C., 1996. Maize simple repetitive DNA sequences: abundance and allele variation. *Genome* **39**: 866-873.

Dice, L. R., 1945. Measures of the amount of ecologic association between species. *Ecology* **26**:297-302.

Don R.H., Cox P.T., Wainwright B.J., Baker K. y Mattick J.S., 1991. 'Touchdown' PCR to circumvent spurious priming during gene amplification. *Nucleic Acids Res.* **19**: 4008.

Dudley, J.W., 1998. Comparison of Genetic Distance Estimators using Molecular Marker Data. *Analysis of Molecular Marker Data.*

Goldstein D.B. y Pollock D.D., 1997. A review of mutation processes and methods of phylogenetic inference. hpgl.stanford.edu/ projects/microsat./microdist.html.

helix.biology.mcmaster.ca/brent/node4/html, 2001.

Hoisington, D; Khairallah, M. y González-de-León D., 1994. Protocolos de Laboratorio: Laboratorio de Genética Molecular Aplicada CIMMYT. Segunda edición. Mexico, D.F.: CIMMYT.

Jaccard, P. 1908. Nouvelles rescherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44: 223-270.

Johnson T.E. y Hutchinson E.W., 1993. Absense of strong heterosis for life span and other life history traits in Caenorhabditis elegans. *Genetics* **134**: 465-474.

Levinson G. y Gutman G.A., 1987. Slipped-strand mispairing: A major mechanism for DNA séquense evolution. *Mol. Biol. Evol.* **4:** 203-221.

Lipkin E., Ezra E., Mosig M.O., Shalom A., Darvasi A., Khatib H., Hefetz E., Cheng H.H., Soller M. Y Friedman A., 1998. www.nalusda.gov/ttic/tektran/data/ 000008/21/0000082126.html.

Macaubas C., Li Jin, Hallmayer J., Kimura A. y Mignot E., 1997. The Complex Mutation Pattern of a Microsatellite. *Genome Research* **7**: 635-641.

Maize Data bank, 2001. http://www.agron.missouri.edu/Coop/SSR-Probes/SSR1.html.

Nestares, G., 1996. Tesis de Maestría en Mejoramiento Genético Vegetal. Caracterización de germoplasma elite de maíz (Zea Mays L.) por grupos de heterosis. UNR-INTA.

Ornella L., Schlatter A.R.; Eyherabide G.; Suarez E., 1998. Identificación de líneas de maíz (Zea mays L.) mediante el uso de secuencias microsatélites. XVI Seminario Panamericano de Semillas.

Pejic I. Ajmone-Marsan P. Morgante M. Kozumplick V. Castiglioni P. Taramino G. Motto M., 1998. Comparative analysis of genetic similarity among inbred maize lines detected by RFLPs, RAPDs, SSRs and AFLPs. *Theor Appl Genet* **97**: 1248-1255.

Provan J., Soranzo N., Wilson N.J., Goldstein D.B. y Powell W. A Low Mutation Rate For Chloroplast Microsatellites. *Genetics* **153**: 943-947.

Rogers, D. G. y Tanimoto, T. T., 1960. A computer program for classifying plants. *Science* **132**:1115-1118. Russel, P. F. y Rao, T. R., 1940. On habitat and association of species of anopheline larvae in southeastern Mdras. *J. Malar. Inst. India* **3**:153-178.

Sambrock, J; Fritssch, E.F. and Maniatis, T., 1989. Molecular cloning, a laboratory manual. 2nd ed. Cold Spring Harbor, N.Y..

Schlötterer C. y Tautz D., 1992. Slippage synthesis of simple sequence DNA. *Nucleic Acids Res.* **20**: 211-215.

Shagai-Maroof M.A., Soliman K.M. Jorgensen R.A. y Allard R.W., 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations, and populations dynamics. *Proc Natl Acad Sci USA* **81**: 8014-8018.

Smith J.S.C. Chin E.C. L. Shu H. Smith O. S. Wall S. J. Senior M. L. Mitchell S. E. Kresovich S. Ziegle J., 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea Mays L.): comparisons with data form RFLPs and pedigree. *Theor Appl Genet* **95**: 163-173.

Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. Freeman. San Francisco. 573 pp. Strand M., Prolla R..M., Liskay R.M. y Petes T.D., 1993. Desestabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. *Nature* **365**: 274-276.

Stuber C.W., Edwards M.D. y Wendel J.F., 1987. Molecular Marker-Facilitated Investigations of Quantitative Trait Loci in Maize. II. Factors Influencing Yield and Its Component Traits. *Crop Sci.* 27: 639-648.

Tenkouano A., Crouch J.H., Crouch H.K., Vuylsteke D. y Ortiz R., 1998. Comparison of DNA marker and pedigree-based methods of genetic analysis in plantain and banana (Musa spp.) clones. *Theor Appl Genet* **98:** 69-75.

Working group on Biochemical and molecular techniques and DNA-profiling in particular. International Union for the protection of new Varietes of plants. (UPOV), 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea Mays L.): comparisons with data from RFLPs and pedigree. Cambridge, UK.

Working group on Biochemical and molecular techniques and DNA-profiling in particular. International Union for the protection of new Varietes of plants. (UPOV), 1997. Similarity, Clustering and Dendograms. Cambridge, UK.

www.as.wvu.edu.~kgarbutt/Papers2/Hetero.html, 2000.

www.nalusda.gov/ttic/tektran/data/000008/21/0000082126.html, 1998.

Xiao J., Li J., Yuan L. Y Tanksley S.D., 1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. *Genetics* **140**: 745-754.

Youchun Li, Tzion Fahima, Korol A.B., Peng J., Röder M.S., Kirzhner V., Beiles A. y Nevo E. Microsatelite Diversity Correlated with Ecological-Edaphic and Genetic Factors in Three Microsites of Wild Emmer Wheat in North Israel. *Mol. Biol. Evol.* **17(6):**851-862.